Discussion of Haddad, Moreira, and Muir's

"Asset Purchase Rules: How QE Transformed the Bond Market"

Thomas King

FRB Chicago*

Advances in Macro-Finance Research

11 October 2024

* The views expressed herein are not official positions of the Federal Reserve Bank of Chicago or the Federal Reserve System.

The Vayanos-Vila view of bond pricing

Log bond prices are

$$p_t^{(\tau)} \approx \mathbf{E}_t \left[p_{t+1}^{(\tau-1)} \right] - r_t - \gamma X_t^{(\tau*)} \left(\rho_{\tau*,\tau} \operatorname{std}_t \left[p_{t+1}^{(\tau*)} \right] \operatorname{std}_t \left[p_{t+1}^{(\tau)} \right] \right)$$

The effects of bond supply are

bond holdings

$$\frac{E_t\left[p_{t+1}^{(\tau)}\right]}{\partial X_t^{(\tau*)}} \approx -\gamma \left(\rho_{\tau*,\tau} \operatorname{std}_t\left[p_{t+1}^{(\tau*)}\right] \operatorname{std}_t\left[p_{t+1}^{(\tau)}\right]\right)$$

Higher price volatility leads to

- Higher term premia on average
- Bigger effects of bond supply on yields

One source of price volatility is variation in $X_t^{(\tau*)}$.

What does the HMM QE rule do?

Lowers volatility in $X_t^{(\tau*)}$ by having the Fed buy bonds in proportion to outstanding:

$$qe_t = \frac{1}{3}s_t$$

- This dampens the volatility of prices (std_t $[p_{t+1}^{(\tau)}] \downarrow$), leading to:
 - Lower term premia on average.
 - Smaller effects of bond supply on term premia.

Event-study evidence

- Does not control for *expectations*—estimating multipliers requires measuring surprise (D'Amico & Seida, 2024).
- Other things going on too:
 - March 2009 reaction was mostly "*local supply*" effects (D'Amico & King, 2013).
 - *Signaling* effects also matter (Bauer & Rudebusch, 2014).

Regression evidence

Authors show that after 2008:

- Yield curve **slope** is lower.
- Yield **sensitivity** to bond supply is smaller.
 - replicating King (2019)

Two explanations:

- HMM (2024): investors learned the *QE rule*.
- King (2019): rates were close to the **ZLB**.

Why might the ZLB explain these results?

$$p_t^{(\tau)} \approx \mathbf{E}_t \left[p_{t+1}^{(\tau-1)} \right] - r_t - \gamma X_t^{(\tau*)} \left(\rho_{\tau*,\tau} \mathbf{std}_t \left[\boldsymbol{p}_{t+1}^{(\tau*)} \right] \mathbf{std}_t \left[\boldsymbol{p}_{t+1}^{(\tau)} \right] \right)$$

At the ZLB, yield volatility falls because of the lower-bound truncation (std_t $[p_{t+1}^{(\tau)}] \downarrow$).

Reduced volatility leads to:

- Lower term premia on average.
- Smaller effects of bond supply on term premia.

Only need to be *near* the ZLB for this to kick in.

• Because bonds are forward-looking, attenuation can arise when r_t is as high as 2%.

HMM's empirical controls for ZLB do not distinguish this from the QE-rule story.

How important was the ZLB?

Mertens & Williams (2021): "The lower bound has a *sizable effect* on the distribution of interest rates."

• Options data imply investors expected to be near ZLB *most* of the time.

	Table 1: Effective Lower Bound Risk			
		Probability	Probability	Probability
Model based avidence		of ELB by	of ELB by	of ELB by
		2021:Q4	2024:Q4	2029:Q4
	Time-series models			
	Del Negro and others (2017)	21	35	51
	Johannsen and Mertens (2018)	4	14	28
	Lubik and Matthes (2015)	2	7	12
	DSGE models			
	FRB Chicago, $r^{LR} = 0.5$	13	23	41
	FRB Chicago, $r^{LR} = 1.0$	7	15	29
	FRB Chicago, $r^{LR} = 1.5$	4	9	19
	FRB New York, $r^{LR} = 1.9$	24	39	51
	FRB/US model (June 2019 SEP, $r^{LR} = 0.5$)	27	48	68
	Addendum			
	Survey of Primary Dealers	35	n.a.	n.a.
	(Median, July 2019) Source: D	uarte, Johan	ssen, Melos	si, Nakata (201

"The proximity of interest rates to the ELB has become the preeminent monetary policy challenge of our time." – Jerome Powell, 2019.

QE rules and ZLB are coextensive.

It is inconsistent to argue that the ZLB is irrelevant but QE is relevant.

- HMM assume after 2008 the QE rule is *always* in effect.
- In reality QE *only* happens at the ZLB.

For QE rule to matter, ZLB must have a significant probability of binding.

• But that changes the properties of the model.

Need a model that incorporates **both**....

QE rules with the ZLB

Adjust the HMM model by making the short rate follow a shadow-rate process:

 $\hat{r}_{t} = \hat{r}^{*} + 0.95(\hat{r}_{t} - r^{*}) + \epsilon_{t}^{r} \qquad \epsilon_{t}^{r} \sim N(0, 0.009) \quad \longleftarrow \text{ (estimated over 1954 - 2008)}$ $r_{t} = \max[0, \hat{r}_{t}]$

- Other parameters calibrated to (roughly) match authors' results.
- \hat{r}^* is steady-state (nominal) short rate this matters when there is a ZLB.
 - Calibrate to 5% for pre-2008.
 - Then change to match post-2008 average of 1%.

0.8 0.6 0.4 0.2 0.0 0.0 0.5 10 15 20 maturity

Bond supply effect on TP at steady state

0.8 0.6 0.4 0.2 0.0 0.0 0.5 10 15 20 maturity

Bond supply effect on TP at steady state

ZLB + QE rule

• Now assume QE rule applies, but only at the ZLB...

$ZLB + QE rule \approx ZLB alone$

- Marginal effects of QE rule are small because
 - Rule kicks in 1/3 as often.
 - Rule kicks in when it is least effective.

Does the HMM rule capture the right *qualitative* behavior?

$$qe_t = \frac{1}{3}s_t$$

- This is definitely *not* the rule the Fed uses.
 - Generous interpretation: approximates more-complicated rule that stabilizes bond prices.
- But why would we expect QE to stabilize bond prices?
 - Fed buys bonds in recessions when rates are going down.
 - Fed sheds bonds in expansions when rates are going up.
 - This should *amplify* bond volatility, not reduce it.
- Authors consider alternative:

$$qe_t = -\mathbf{10} \, \mathbf{r}_t + \frac{1}{3} s_t$$

- This is more realistic.
- Causes all their results to go the other way.

Summing up

- The idea of a QE rule makes sense and should be studied further.
- But the HMM evidence can be explained *without* such a rule.
 - Endogenous effects of the ZLB are enough.
- And, when the rule is adjusted to be more realistic and take account of the ZLB, it has small effects that likely increase bond volatility.